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A rigorous, kinematic description of the stretching and alignment of infinitesimal 
material elements in general flow fields is presented. An evolution equation is 
derived, in the Lagrangian frame, for the alignment angles between a material 
element and the principal axes of strain. The equation identifies the precise roles 
played by the local angular velocity and the rotation of the strain axes in the 
alignment process and provides the framework in which to investigate the extent to 
which the straining field is ‘persistent ’. This general kinematical picture is specialized 
to study line and vortex stretching in fluid flows and analytically predicts the 
numerically observed alignment of the vorticity vector with the intermediate strain 
axis. The alignment equations are solved exactly for a number of special flow fields 
and investigated numerically for the ABC and STF flows. The kinematic formalism 
and numerical phenomenology suggests the use of new criteria to analyse the 
material element stretching properties of large-scale numerical simulations. 

1. Introduction 
The goal of this paper is to analyse, for quite general flow fields, the way in which 

material elements align with the local straining field and the subsequent degree of 
exponential stretching that ensues. Here the term ‘material element ’ corresponds to 
the traditional concept of a collection of tagged fluid particles, each of which follows 
its own Lagrangian trajectory. In  addition the material element, which here can be 
either one-dimensional (a line) or two-dimensional (a surface) is assumed t o  be 
passive; that  is, it does not interact with the flow field. Apart from the obvious 
examples of threads of passive scalars such as temperature and dye, the stretching 
dynamics of material lines is a fundamental process relevant t o  understanding the 
stretching of vortex lines in ideal fluid flows and magnetic fields lines in ideal 
magnetohydrodynamic (MHD) flows. In  addition, the deformation of infinitesimal 
material surfaces provides a model for propagating flame fronts. The alignment and 
stretching dynamics of lines is also useful in understanding the deformation of 
polymers, although they are not strictly passive, in turbulent flows - a vital issue in 
theories of drag reduction (Tabor & de Gennes 1986). 

Our approach in this paper is primarily kinematic - that is, we will assume that the 
velocity field u ( x , t )  is prescribed. Our aim is then to understand exactly which 
properties of u lead to  the exponential stretching of material elements. Although we 
are primarily concerned with the fluid mechanical context and turbulent flows in 
particular, we are careful to separate results and insights for general flows from those 
of fluid dynamic significance. Thus, some of the concepts discussed here are also 
relevant to  the analysis of three-dimensional chaotic dynamical systems in the large. 
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Although there have been many statistical theories of material element deformation 
in general and fluid flows (Batchelor 1952; Cocke 1969, 1971; Orszag 1970; 
Kraichnan 1970, 1974; Drummond & Munch 1990; Girimaji & Pope 1990), the 
kinematic details have apparently been somewhat neglected (Vieillefosse 1982, 1984 ; 
Majda 1991). In order to make precise comparisons with certain results of Girimaji 
& Pope and Vieillefosse we will, where appropriate, introduce the dynamical content 
of the Navier-Stokes equation into our kinematical formalism. 

In studying the stretching process the traditional point of view has been to assume 
that the local straining field is ‘persistent ’. That is, the combined effects of vorticity 
and the rotation of the strain axes are small compared to the stretching effects of the 
principal shears themselves. This enables a material element to have time to align 
with the principal strain axis with the largest positive eigenvalue and hence 
experience the maximal, exponential stretching. The question of exactly how 
persistent the straining field of a given velocity field is, is an open one. The main aim 
of this paper is to provide the correct framework in which to study this fundamental 
problem and to give specific analytic and numerical examples illustrating this 
framework. 

The assumption of persistent straining was made by Townsend (1951) in his study 
of the cooling of heat spots in decaying grid turbulence. Analytical estimates of the 
cooling rate, using this assumption, were found to be in good agreement with the 
experimental observations at  mesh Reynolds numbers of several thousand. The first 
systematic treatment of the stretching of material elements in turbulent flows was 
given by Batchelor (1952) who made a number of important assumptions. The first 
was that a finite material element can be considered as a collection of infinitesimal 
elements since, in a turbulent flow, the stretching of elements separated by more 
than a few Kolomogorov lengths should be completely decorrelated. As long as one 
is averaging over many different material elements this appears to be a very 
reasonable assumption. This point of view will also be adopted here. It was also 
assumed that material points separate (continually) at  an exponential rate (a 
rigorous demonstration of this, for finite times only, was provided much later by 
Cocke 1969) and a mean rate of exponential stretching was introduced. Although no 
assumptions about the persistence of the straining field were made in that paper the 
subsequent work of Batchelor & Townsend (1956) explicitly assumed persistence. 
This enabled the mean stretching rate to be identified with the mean of the largest 
eigenvalue of the rate of strain tensor (for which an estimate was given). Although 
there has, in fact, been little evidence to support the persistence-of-strain hypothesis 
(except for Townsend’s experiment) it was sufficiently convenient to be adopted in 
many fluid dynamics problems (see, for example, Monn & Yaglom 1975). 

Recently, however, various large-scale numerical simulations have cast doubt on 
this assumption. A study of the alignment of vorticity by Ashurst et al. (1987) 
showed that the vorticity tended to align with the strain axis with the intermediate 
eigenvalue rather than the direction with the largest eigenvalue -which should be 
the case (in ideal fluids) if the strain were persistent. An additional challenge has also 
been provided by Girimaji & Pope (1990) on the basis of their detailed studies of 
Lagrangian statistics in homogeneous isotropic turbulence at Taylor-scale Reynolds 
numbers of up to 90. They found the mean exponential stretching rate on a material 
line to be about one third of the Batchelor & Townsend result. This, coupled with 
other numerical tests, which we shall discuss later, indicated that the strain is not 
persistent. 

This paper is organized as follows. In the next section we derive equations of 
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motion describing the alignment of a material element - lines, surfaces and vorticity 
-with the principal axes of strain. It is this rate-of-strain basis that  provides the 
correct framework for analysing stretching and alignment phenomena as well as 
being the ‘experimental ’ basis, i.e. the basis in which these phenomena are measured 
computationally. The equations of motion provide a precise quantification of the 
stretching rates of these material elements and the role which the local angular 
velocity (vorticity) and the rotation of the principal strain axes play in upsetting 
perfect alignment. In  $3  we give the exact solutions to  these equations for a variety 
of simple flow fields (namely, for various combinations of shears, and for extensional 
flow) and for the case of general two-dimensional flow we reduce the alignment 
equation to  a particularly simple form. These analytical results give valuable insight 
into the details of the strain-basis rotation mechanism. In  $4 we specialize our 
kinematic formalism to the case of material line and vortex stretching in fluid flows, 
relating the results of this work to those of Girimaji & Pope (1990) and Vieillefosse 
(1982, 1984). This study suggests new criteria for estimating the extent to which 
strain is or is not persistent and gives additional insight into why the tube-like 
regions of strong vorticity observed in turbulence simulations show strong alignment 
with the intermediate strain axis. In  $5 we present numerical studies of the 
alignment dynamics for the ABC and STF flows. Despite their simplicity, the study 
of these flow fields (which are of considerable interest in dynamo theory) provides 
insight into the phenomenology of alignment dynamics for chaotic particle paths. In  
the last section we summarize our results and identify the remaining problems to  be 
resolved. 

2. Alignment kinematics 
To obtain the desired alignment equation, we derive separate temporal evolution 

equations for material elements and for the principal directions of strain. Since this 
is a Lagrangian problem each fluid particle that  makes up the material element is 
taken to follow its unique path determined by 

(1) 

Since it is infinitesimal, a material element, represented a t  time t = 0 by !,, evolves 
according t o  the standard equation 

d 
dt 
-x = u(x( t ) ,  t), x(0) = xo, u, x, X O € B 3 .  

(2) 
d 
dt 
-f(t) = (1.V) u = A(t) @), Z(0) = i,. 

Here and throughout this paper A(t) denotes the velocity gradient tensor au/ax, and 
Z denotes a line element evolving according to (2). A surface element is represented 
as the vector product of two line elements Z, and Z, each of which evolves as a line 
element. The instantaneous exponential stretching rates for line and surface elements 
are given by (Batchelor 1952) 
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(here ul A v, is the vector product; llvll is the length of v ) .  The quantities cine and curface correspond to mean stretching rates, where the overbar denotes a time 
average (equivalent to an ensemble average for ergodic flows). 

Anticipating that the alignment of material element l(t) only concerns the 
direction of l ( t ) ,  we introduce the unit vector f(t) in the direction of 1 which evolves 
according to 

(here ( v l ,  v , )  is the dot product). With this notation the instantaneous exponential 
separations can be expressed as 

- -  , (7) 
- (i,,sil)+(iz,siz>-2(11,i2) (Si1,i,> 

1 - (4, [surface - 

where S(t) = $(A +At )  is the symmetric part of the velocity gradient tensor A(t) (i.e. 
the rate-of-strain tensor), and At is, the transpose of A. 

We now introduce the basis {11, {,, t3} in which the strain tensor S(t) is diagonal. 
That is, we write S(t) = X D X ,  where X is the matrix whose rows are the positively 
oriented ortho-normal eigenvectors (i.e. detX(t) = + 1 for all times t ) .  D is the matrix 
of eigenvalues diag{sl,s,,s3} ordered so that s1 2 s, 2 s3. In the context of fluid 
dynamical flows we shall also assume that the flow is incompressible (i.e. sl+s,+ 
s3 = 0) so that s1 2 0 and s3 < 0 for all times. The moving coordinate system in which 
S(t) is diagonal will be referred to  as the strain coordinates or as the strain basis. In  
strain coordinates the stretching rate (6) becomes 

Cline = C si (8) 

where 1 = X i  expressed in strain coordinates. Thus, hi is the cosine of the angle 
between land  ti. Equation (8) emphasizes the close connection between exponential 
stretching of material elements and their alignment with the principal axes of strain. 
Note that 'perfect alignment ' for the line elements corresponds to I ,  = ( f 1,0,0) and 
[,ine = s1 which is just the idealized persistence-of-strain hypothesis" of Batcheltr & 
Townsend. Perfect alignment for material surfaces corresponds to = fl and A, = 
4, and, hence, [surface = s,+s, (Batchelor 1952). 

To obtain the evolution equation for the components of 1 we require evolution 
equations for both the material element and for the basis of eigenvectors. Starting 
from 

dt (9) 

we can use ( 5 )  on the first term, but must now derive an equation governing tbe 
e"vo1ution of the eigenvectors. Requiring orthonormality of the principal axes, (ti, 
<*) = a,, guarantees that ((d/dt) ti, &> = 0 for all times and, hence, that 
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for some vector Q'(t) .  The vector 52'(t) is the instantaneous axis of rotation for the 
principal axes of strain and we shall refer to it as the strain rotation vector (a more 
compact term might be the 'orienticity'). To calculate the components of a', we 
differentiate the characteristic eqFation Sg, = s,& with respect to time, take the 
inner product of both sides with ti, use ( lo) ,  and obtain the result 

(here ei,k is the usual three dimensional totally antisymmetric tensor, and the over- 
dot denotes total time differentiation). It should be noted that (1  1) gives f2' in strain 
coordinates and that Q' depends on the dynamic evolution of the velocity field via 
S. In  the fluid dynamical setting this evolution equation for S is just the symmetric 
gradient of the Navier-Stokes equation. We will always assume that W is finite as 
the principal shears become degenerate. This is shown explicitly in two dimensions 
(see the Appendix). The assumed finiteness of Q', the condition detX(1) = + 1, and 
the ordering s1 2 s2 2 s3 ensure that the eigenvector matrix X ( t )  is well-defined and 
unique for all times (i.e. that  X(0)  determines X ( t )  for all times). 

Now (9) becomes 

3 

where 52 is the angular velocity of the local fluid element, i.e. 52 = gV A u (to be 
distinguished from the actual vorticity w = V A u )  and cline is the instantaneous 
stretching rate given by (8). Thus, the second term in (12) is nonlinear. Noting that 
the angular velocity and strain rotation appear together in (12) we define the vector 
W = 52-52' which we call the effective rotation. In strain coordinates the material 
element sees the rotating effect of angular velocity A2 and eigenvector rotation 0' as 
if the angular velocity were replaced by W and the eigenvectors were stationary 
(nl = 0) .  The terms in the alignment equation are interpret2d as follows. The first two 
terms in (12) exponentjally attract the material element 1 into alignment with the 
principal direction, el, corresponding to the largest strain; the last term 
instantaneously rotates it about the axis W with angular velocity llWll. The rotating 
effect of this term is clear ; the aligning effect of the first two term is seen as follows. 

If we isolate the alignment terms of (12) by assuming that the first two terms are 
dominant (i.e. W x 0 )  and set qi = si-cIine, equation (12) becomes 

d 
dt 
--hi = qah,. 

In  this form the components of the material element are seen to instantaneously 
either grow or shrink exponentially. Incompressibility, the ordering s1 2 s2 2 s3, and 
the condition cline < s1 immediately gives the inequalities 

71 2 0, 71 2 7 2  2 73, 73 < 0. (14) 

Thus, h,(t)  monotonically grows to f 1 and h3(t)  monotonically shrinks to 0. The only 
complexity lies in the behaviour of -h2(t). All we can say about A, is that  its 
growth/decay rate v2 has the same instantaneous sign as s2. This is seen as follows. 
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After transients of the material element’s initial condition have died out, (14) will 
ensure that 

for all subsequent times. Then, assuming s 2 ( t )  is positive we have 

A:@) b At ( t )  b hi@) (15) 

T 2  = S 2 - S 2 h ; - s l h ; - S 3 A ~  

2 -SIA:-s,h; b - ( S l + s 3 ) A ;  = S z A i  2 0. (16) 

Similarly, if S 2 ( t )  is negative we conclude that qz < 0. In the absence of rotation, 
W = 0, the instantaneous sign of s 2 ( t )  determines the growthldecay of A, and, hence, 
how quickly n̂ reaches the state of ‘perfect’ alignment. According to the time- 
averaged sign of s 2 ( t )  there will be two alignment paradigms: ‘efficient’ and 
‘inefficient ’ alignment. Inefficient alignment is characterized by g2 > 0 in which, on 
average, the material line is attracted to both the f l  and f 2  directions. On the other 
hand, efficient alignment is characterized by S, < 0. Here only the direction 
attracts the material line. Analytical arguments (Betchov 1956) and numerical 
results (Ashurst et al. 1987) independently suggest that the average value g2 is 
positive for idealized turbulence. This suggests that the state of inefficient alignment 
should be typical and that the rate of stretching should be significantly reduced 
(ignoring rotational effects). 

= (k 1,0,0) ,  = 
(0, f 1, 0), and #3) = (0, 0, f 1). Only A(’), i.e. the perfect alignment state, is a stable 
fixed point of equation (12) with 99 = 0 ; both are unstable. Study of the 
fixed points and stability properties of the alignment equation for W =l= 0 is an 
important problem worthy of further investigation. 

For non-zero W the typical situation may well be that strong angular velocity or 
strain rotation, or both, conspire to unpredictably upset the aligning efforts of the 
first two terms of (12). The numerical integrations of the alignment equation 
discussed in $5  certainly display this feature. Inspecting (12) we would expect that 
in the limit in which the rotation term is much stronger than the aligning terms (i.e. 
9$3- si) the material element will rapidly rotate about the instantaneous rotation 
vector 9. Hence there will be a nearly vanishing mean exponential stretching rate 
l&ne as long as the vector W itself has no special alignment properties. If W does have 
special alignment properties, as may be the case for fluid flows, the situation is more 
complex. These complexities are not present in material line stretching in two 
dimensions where the vorticity and strain rotation are constrained to point in one 
direction (the direction out of the plane of motion) and where we expect that the 
99 3- s limit exactly differentiates cases of minimal and maximal persistence of strain. 
We will see this explicitly in $3. 

We conclude this section by discussing general features of the alignment equation 
(12) for vorticity in ideal fluid flows. The angular velocity (vorticity) evolves for ideal 
flows as the curl of the Euler equations 

The fixed points of the alignment equation with W = 0 are 

and 

(17) 
d 
dt 
-n = a , n + ( U - V ) n  = ( 0 . V ) u  =&)a. 

This is identical in form to the evolution equation for material lines, (2). As before 
we introduce the unit-length vorticity in the strain basis fi and the vorticity 
exponential stretching rate cVorticity so that 

C m i C l t Y  = <a Sh> = c si @. (18) 
i 
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The alignment equation for vorticity becomes 

8-&,orticityfi-sd' A 8. 
0 0 s3 

The angular velocity $2 is absent here because sh A 8 vanishes identically. The 
absence of this term distinguishes material line and vorticity stretching (compare 
(12) with (19)). Since, in general, we interpret effects of rotation as denying the 
material element a chance to align with the principal stretching directions we would 
expect the absence of this term to cause material lines to stretch less than vorticity 
itself. 

We now compare the relkive extents of possible line element stretching and 
vorticity stretching. In the case of the latter let us suppose that the vorticity (and 
hence 51) aligns to some extent with both il and f 2 ,  i.e. we write 

(the results of Ashurst et al. suggest, in fact, that on average 52, > 52,). In a similar 
vein, for line element stretching, we can write 

(for persistent strain A, is significantly larger than A 2 ) .  Comparing the line element 
(12) and vorticity (19) alignment equations, the only difference between these two 
processes lies in the term 

From this we immediately see two interesting"1imits. One c2rresponds to the 
(experimentally) inconsilstent case of both sh and 12 aligning with &. This would lead 
to a small value of sh h 1 with the consequence that the 1 and b alignment equations 
are approximately the same and hence Gine x cvorticity; The c$her, (experimentally) 
more consistent limit, corresponds to sd aligning with r2 and 1 aligning with f ,  (even 
if the strain is not fully persistent) and hence a more significant contribution from 
51 h i. This contribution takes the form of fluctuations in A, (see (12)) which will 
result, since s3A; is negative definite, in Gine < cvorticity. This prediction should be 
measurable using direct numerical simulation techniques. (It should also be possible 
to give analogous kinematic arguments to compare Gine with gurface.) 

sh X s2,5;+52,rA, (20) 

Lx h,r;+A,& (21) 

sh A n^X ( ~ l A 2 - ~ 2 A l ) < 3 .  (22) 

3. Exact solutions for simple flow fields 
In this section we present exact solutions to the alignment equation (12) for 

velocity gradient tensors of several different forms. The first example will be 
extensional flow. The second will consist of two increasingly general shear flows. Our 
third example will be general two-dimensional flows. The utility of these exact 
solutions is primarily illustrative but does provide valuable insight into behaviour in 
the strain basis. For general three-dimensional velocity gradient tensors, the 
difficulties of analytically solving the alignment equation explicitly are substantial 
and can only be overcome by choosing forms of the velocity gradient tensor which 
are easily diagonalized. 

Incompressible extensional flow, 

A(t) = 0 52 : ), (: 1 -(s,+s,) 
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gives the same qualitative features of the alignment term of (12) in the limit of a 
vanishing rotation term. That is, extensional flow asymptotically reaches perfect 
alignment. For extensional flows there is no angular velocity or eigenvector rotation. 
The alignment equation can be written in the form 

which gives A,( t )  and A3(t) in terms of A,( t )  

The negativity of the right-hand sides of (24) then ensures that A ,  and A, 
exponentially go to  zero and hence that A,  approaches f 1 as t becomes large. The 
state of perfect alignment is reached exponentially, and once reached the stretching 
rates satisfy 

for large 7.  
61ine(T)r Cvortjcity(7) N ~ 1 ( 7 ) ,  CsurPace(7) - s1(7) +SAT) (26) 

Next, we solve the case of a single shear flow, 

0 a( t )  0 

0 0 0  
A(t) =(0 0 O),  

where a( t )  is the shear au,/ay evaluated along the Lagrangian path. This flow will 
have the effect of pushing the material vector away from the y-direction, so that it 
will eventually align with the direction of fluid flow (in this case the x-axis). At any 
instant in time, I will align with the either the x-axis or the -x-axis depending on 
the instantaneous sign of a(t) .  This qualitative behaviour is most clearly seen out of 
the strain basis. The Cartesian evolution equation for the material vector, (2), can be 
readily solved to give 

It is clear here how the instantaneous sign of a( t )  determines the small-time increase 
or decrease of I , .  As a prelude to things to come, we now repeat this result in the 
strain basis. The principal shears are s1 = ;la[, s2 = 0, s3 = -;[a[ ; the corresponding 
orthonormal, positively oriented eigenvectors are 

(29) 
- 0 -  - 0 -  

5 --(I, 1,0), 5, = (O,O,  11, 53 =-(I,  - 1 , O ) ,  
1 -  2/2 d 2  

where g ( t )  is the instantaneous sign of a( t ) .  At any instant in time the eigenvectors 
are stationary. Thus, the shear rotation vector is zero and the rotation 5t is just the 
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angular velocity written in the strain basis, i.e. @(t) = Xl2 = (0, -$(t),O). By 
changing variables to 

1 1 
a = --(A,+A,), p = -&-A,), y = A,, 

4 2  4 2  

and introducing the monotonically increasing time variable 

~ ( t )  = la(t’)l dt’, 
0 

we transform the alignment equation (12) into 

Since these equations are invariant under the transformation (a, B, a) * (B, a, -u), 
we may assume that u = + 1. Hence we can solve the resulting equaiions and apply 
this invariance to obtain the solution for u = - 1.  The relation 1 = 11111 = a2+P2+ y2 
suggests the use of spherical coordinates 

a = cose, /3 = sinOcos#, y = sinesin# (33) 

which reduce the alignment equation, with u = + 1, to the exactly solvable form 

= - sin2 i3 cos #, - d# = 0. de 
dr dr 
- 

The solution is then 

(34) 

(35) 

given initial conditions ao, Po, and yo. As long as a( t )  is positive (a = + 1) the material 
line approaches the state P, y - 0 and a - f 1 as t + 00,  corresponding to alignment 
with the x-axis. (This is the only possibility since a, P, and y must all be bounded.) 
While a(t) is negative the u = - 1 solution leads to a, y - 0 and /3 - f 1 as t --f 00. 

Thus, u = - 1 leads to alignment with the -x-axis. If we take the shear a to be 
constant, r is fixed and we get either a, y - l / t  or P, y - l / t  (depending on whether 
u = + 1 or u = - 1 ) .  Since this asymptotic approach of the x-axis is algebraic we 
expect the mean exponential separation to be zero. This result will be made explicit 
in what follows. 

The case of the two-shear flow, 

is qualitatively very similar to the single-shear flow and is also exactly soluble. Here 
a(t)  and b(t) are, respectively, au,/ay and au,/az evaluated along the Lagrangian 
path. Intuitively, the flow pushes the material element away from both the y- and 
z-directions, so that as long as a and b are monotone increasing or decreasing we 
expect alignment with the x- or -x-axis, respectively. Again, this is most easily seen 
by solving the Cartesian evolution equation for I to obtain 
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Unlike the single-shear flow, however, here the principal axes are moving, so that 
although we know that alignment can only happen asymptotically with the &x-axis, 
it is not clear a priori what happens in the strain basis. We proceed now in the strain 
basis. The principal shears are s1 = $c7 s2 = 0, s3 = -&, where c2 = a2+b2. The 
principal directions are 

In strain coordinates the angular velocity is 52 = (0, -tc(t), 0). The strain rotation is 

where K is the curvature of the curve with velocity vector (a( t ) ,  b ( t ) )  in the (a,  b)-plane 

ab - bci 
(a2 + b2)g ’ 

K ( t )  = 

Once again using the coordinates defined by (30) as well as the analogous 
monotonically increasing time variable 

the alignment equation becomes 

One can see that the only steady-state solution of (39) is a = f 1 and /? = y = 0 (i.e. 
alignment with the fx-axis). So, if any alignment is to persist it  must be made with 
the fx-axis. Again using the spherical coordinates (33) we obtain the two equations 

_ -  d$ - - sin2 0 cos $, - = - ~ ( 7 ) .  
d0 
d r  dr  

Solving these equations with initial conditions a,, Po, yo and tan$, = yo/Po, one 
obtains 

We have introduced the ratio r ( t )  = a( t ) /b( t )  and note that the solution depends on 
a and b only through their ratio. To characterize this solution we study those 
particular forms of the functions a and b which lead to the steady-state alignment 
with the x-axis. The only way in which steady state can be reached is for the integral 

rcos$(+)dr’  0 = ~cos($-$,)(~os$,--  rro+ 1 (42) 

to be monotone increasing or decreasing. Since cos $ is always between - 1 and 1 this 
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will happen if it  takes on one sign more frequently than the other sign. Thus, if 
cos $75 is periodic in 7 no alignment with the &x-axis will be attained. Another way of 
expressing this is as follows. If the zeros of the integrand, which occur whenever 

(43) 

are crossed with equal frequency in time then alignment (with the x-axis) will be 
suppressed. Note that all features here are highly dependent on both the initial 
conditions of n” (via a,, Po, and yo)  as well as the initial conditions of the shears a, and 
b,. The shear flows studied here have a strong memory of their initial conditions. This 
strong memory should certainly be lost for chaotic particle paths. 

1 b  1+r,tan$750 - - Pobo+aoyo r ( t )  = -- = -3 and r( t )  = 
ro a0 tan $75, - r, yo bo -ao b, ’ 

If a and b are both constant, (41) reduces to 

r ( t ) / P ( t )  = Yo/Po, YOlY(t) = “0 + t [ C ( f i  + y3t cos $7501. (44) 

This can only be satisfied for large t if a - + 1 and P, y - l / t .  Thus, constant a and 
b leads to asymptotic algebraic alignment with the +x-axis. 

This algebraic alignment would lead us to believe that the mean exponential 
stretching should be zero for the two-shear flow with constant shears a and b. In fact, 
the exponential separation is zero for general time-dependent a( t )  and b( t ) ,  as we shall 
now show. The exponential separation can be written &ine(t) = 2caP. The time- 
averaged line separation can be seen to be zero as follows: 

(45) 
l T  

Gine = 2 lim TI, a(7) ~ ( 7 )  d7 
T+CC 

1 
d8 = - 2 lim -log sin O( 5”) = 0. 

l:,:) cos 8 =-2 l im-  - 
T-CC sin 8 T+m 

(Here we have used the monotonicity of 7 as well as (40) in the form sin28d8 = - 
cos q5 dq5.) If we make the plausible assumption that turbulent flows exhibit some 
degree of positive exponential separation (Cocke 1969) then, by comparison, the two- 
shear flows studied here can be thought of as examples of flows with the ‘worst’ 
alignment properties. 

The alignment equation for general two-dimensional flows can be reduced to a very 
simple equation. Here, the gradient tensor is written in the form 

where a( t ) ,  b ( t ) ,  c ( t )  and Q ( t )  are given functions of time t .  We can also consider 
compressible flows (c = ~ V - U  =k 0) here because we will find that c does not enter the 
alignment equation. One obtains the angular velocity 0 = 8 2  (2 is the unit vect2r 
;orma1 to the plane) and shears s* = c f y where y2 = a2 + b2. The shear basis is {<+, 
<-} where 

L = [2y (y fa ) ] i  ( b ) .  - a f y  

The eigenvector rotation is 

R .  Q=-- 1 ab-ab 
2 a2+b2 (49) 
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If A, and A- are the cosines of the angles between n̂ and the principal directions [+, - 
we choose the coordinates a, - = ( A + + A - ) / d 2 ,  and define the monotonic time 

~ ( t )  = 2 y(t ')  dt', L 
the alignment equation becomes 

This equation only depends on the flow fields through the parameter r(7) = 
( a l - Q ) / y  (i.e. the ratio between the effective rotation and the difference between 
the shears). Furthermore, r is independent of the compressibility c. Since a: +a! = 
1 for all times we use the polar coordinates 

a, = cos ( i d ) ,  a- = sin ($3) (52)  

and transform the alignment equation into 

dd 
---cosO = r ( 7 ) .  
d7 (53) 

Although this equation appears not to be exactly soluble for general r (7 )  it is 
probably amenable to numerical simulations. Further work is needed to explore this 
and other possibilities. The mean line stretching rate can be written in the form 

It is interesting to note that for compressible two-dimensional fluid flow fields, the 
compressibility F = (d/dt) logp and hence time averages to zero. For incompressible 
flows we can see exactly how the limits Irl < 1 and Irl % 1 respectively lead to 
maximal and minimal persistence of strain. Recall that the large and small rotation- 
versus-shear limits were discussed above in the context of general flow fields. Here 
we can see exactly how these limits are manifested. When Irl 4 1, (53) is exactly 
soluble leading to exponentially achieved perfect alignment. On the other hand when 
Irl % 1, O(7) can be seen to be a rapidly varying function of 7 so that sin 0 will oscillate 
quickly and average to zero. Thus, the persistence of strain in two-dimensional fluid 
flows can be characterized with a single number. In three dimensions the situation 
is considerably more complex. 

4. Line and vortex stretching in fluid flows 
We now consider material line and vorticity stretching in incompressible fluid 

flows by introducing the dynamics of the Navier-Stokes equations into our 
kinematic formalism. Our aim here is to  illustrate the utility of the strain-basis 
kinematic formalism - especially as it relates to the work of Vieillefosse (1982, 1984) 
and Girimaji & Pope (1990). I n  specializing the general alignment equation (12) to 
the particular case of fluid flows it is important to note that this general equation 
depends on three classes of external time-dependent quantities : the principal shears 
(sl, s2, and sa), the angular velocity (vorticity) 52 and the eigenvector rotation 52' as 
defined by (1 1). These external quantities are either derived explicitly, as is the case 
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for the exact solution and numerical model velocity fields of $53 and 5 ,  or are 
themselves governed by evolution equations, as is the case here. For a viscous fluid 
the local angular velocity evolves according to the curl of the Navier-Stokes 
equation 

(55)  

and itself evolves as a material line in the limit of vanishing kinematic viscosity u (cf. 
(2)). The symmetric gradient of the Navier-Stokes equation, 

d 
dt 
- -a(x, t )  = s51+uv251, 

(56) 
d 
dt 
- S(x, t )  = - ( s2 + 0 2 )  - P + vv2s, 

determines the evolution of the principal shears. Here d denotes the vorticity tensor 
; (A(t)  - A t ( t ) ) ,  and P(t )  denotes the pressure second-derivative tensor, both evaluated 
along a fluid particle path. This leads to an expression for the local eigenvector 
rotation in the strain basis : 

From (57) it is evident that the total strain rotation vector can be split into three 
parts 51' = Wb + a;, + 51:, isolating rotations of the strain axis due to vorticity (ab), 
off-diagonal pressure Hessian (ap), and viscous effects (51;). 

Girimaji & Pope (1990) observe material line stretching rates in isotropic 
turbulence simulations that are significantly smaller than would be measured for an 
ideally persistent straining field. They attribute these smaller than expected 
stretching rates to the effects of vorticity and 'non-persistent straining'. ('Non- 
persistent straining ' refers to misaligning effects due to the rotation of the principal 
strain axes.) To test this hypothesis it is necessary to isolate these effects from one 
another and compare their roles in reducing material line stretching rates. Girimaji 
& Pope investigate this by replacing the velocity gradient tensor in the material line 
evolution equation (2) with appropriately modified gradient tensors. Specifically, 
given a numerical velocity gradient tensor A(t) satisfying the simulated Navier- 
Stokes equation, (2) is modified to 

d 
dt 
-l( t)  = A(0) f ( t )  

to isolate the effects of vorticity, and into 

d 
dt 
-&) = +(A( t )+A+( t ) )  f(t) 

to isolate the effects non-persistent straining. A(0) in (58) is the one-time spatial- 
averaged gradient tensor. Girimaji & Pope conclude that both of these effects in 
isolation significantly limit alignment, and that this misaligning tendency will persist 
in the presence of both vorticity and non-persistent straining contributions. 

It is evident from the expression for the strain rotation (57) that vorticity and the 
strain rotation are not in fact dynamically independent. Indeed, vorticity appears 
quadratically in the local strain rotation a, and in the non-local strain rotation ap. 
One can see that integrating the modifie! system (58) isolates only the balance 
between the vorticity rotating term 51 A 1 and the stretching terms of the general 
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alignment equation (12). Also, (59) can be s2en to isolate the balance between the 
entire strain rotation term (Jab + SZ; + SZL) A 1. We argue here that a more complete 
study of exactly how the turbulent straining field falls short of persistence should 
compare the relative importance of all of the relevant terms of the alignment 
equation (12). It would be difficult to isolate all of these terms in a manner similar 
to Girimaji & Pope. Instead the importance of these terms can be studied directly in 
the following way. Introducing the magnitude of the stretching terms of (12) 

Y = Ilsn” A 111, (60) 

we form the following dimensionless time-dependent quantities : 

9b(t) = 11% A 111/9,1 
9;(t) = 110: A 1\1/9. J 

(61) 
9dt) = 110 A i11/9, 

9>(t) = IISZL A n”ll/Y, 

These quantities measure the instantaneous relative misaligning magnitudes of pure 
vorticity ( ~ 2 ~ ) ,  of vorticity via strain-axis rotation (9;), of non-local off-diagonal 
pressure strain rotation (9;), and finally viscous strain rotation (9;). As a simple 
illustration we have measured such quantities along ABC flow trajectories and 
observe that the vorticity and pressure contributions to the strain-axis rotation play 
the dominant dynamic misaligning role (see $5 for details). It would be most 
revealing to study both time series and PDFs (in the spirit of Girimaji & Pope 1990 
and the numerical section of this paper) for these quantities in turbulence 
simulations. 

Vieillefosse (1982, 1984) is primarily concerned with studying the possibility of a 
finite-time vorticity singularity in the Euler equations. The presence or non-presence 
of this singularity is closely related to the persistence of the turbulent straining field. 
Vieillefosse analytically treats the gradients of the Euler equation ((55) and (56) 
without the viscous terms) by assuming a special form for the pressure field. 
Introducing the traceless symmetric velocity gradient U = S-4 trace Sl, the tensor 
square of the vorticity V = SZ Q 51, and ignoring viscosity (55) and (56) become 

I - P-- ) ( I - v-- 
3 

(62) 

traceU2 
tra; V ) ( 

d 
- v = uv+ vu. 
dt 

(Here I is the identity matrix.) The only possibility for closing this system of 
equations is to force the pressure second derivative to have the form 

CQ;-S; 
t raceP V 2 p  p=- / = - I =  I. 

3 3 3 (63) 

This form of the pressure second derivative is completely determined by the local 
shear and vorticity. In  particular, the off-diagonal non-local terms are taken to be 
zero and the model, among other things, ignores the effects of pressure on the 
rotation of the strain axis. The physical meaning of these missing terms will be 
discussed below. Once this rather strong assumption is made, (62) can be greatly 
simplified and solved exactly. This analysis leads to the ccydusion that vorticity 
asymptotically aligns with the intermediate strain direction t2, that the intermediate 
shear s2 is asymptotically positive and that both are singular. Both of these results 
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are consistent with several numerical simulations including those of Ashurst et al. 
(1987). Clearly Vieillefosse's model captures some of the observed features of vortex 
stretching in a turbulent fluid. We now turn to what is not captured in this model 
and to how one can made a new attack on this problem using a strain-basis alignment 
equation. 

To illustrate what is physically missing from Vieillefosse's model we focus for the 
moment on the pressure contribution to the strain rotation. For an incompressible 
fluid the pressure field p(x,t) is related to the local shears and angular velocity 
through the Poisson equation 

V2p = -trace A2 = C, 52; - 8; a, 
i 

(64) 

which can be (formally) inverted to give the pressure second derivative (in Cartesian 
coordinates) 

Thus WP depends quadratically on the vorticity and shears of nearby trajectories 
(including the very trajectory in question) and hence, if we assume that the integral 
(65) does not decay too fast, it  is plausible that the non-local vorticity and shear 
contributions to the strain rotation are quite strong - possibly as strong as the local 
ones. This is likely to be the case close to or inside of regions of strong vorticity or 
shear (unless the shear and vorticity conspire to make a(t) small). Indeed in 
Vieillefosse's model a(t) diverges along the trajectory in question. Therefore the 
approximation given by (63) is likely to become inconsistent as this singularity is 
approached. However, at this time the precise role of non-local pressure contributions 
to vorticity stretching and alignment is not fully understood (She, Jackson & Orszag 
(1991)). 

We suggest here that the strain-basis alignment formalism presented earlier may 
prove to be useful in understanding the observed vorticity alignment including a 
more general (than Vieillefosse) handling of the non-local effects of the pressure field. 
Equations (55) and (56) in the strain basis are 

d 
dt 3 -  

d 
-Qi = siSZi-((Jab+Jap) A Q),+vV252,, 
dt 

-s - -s;+(n2-52;)-P,+VV2s,, j = 1,2 ,  ] (66) 
i = 1,2 ,3 .  

One should note that the strain-axis rotating effects of viscosity (i.e. Qi A Q term) 
are not present since one can show that they are identically cancelled by terms 
arising from writing V251 in the strain basis. (However, the terms are present in 
the evolution of material lines and this further supports the point made at the end 
of 5 2 that cvSvorticity > gine). In the limit of vanishing viscosity the strain and vorticity 
evolution equations can be written in the form 

d 
dt * -  -s - -s;+(a"52;)-qj, j = 1,2,  

(68) 
d -ai = (si+ai)Qi+,8,, dt 

i = 1 ,2 ,3 ,  
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where 

It is important to note that in the context of vortcx stretching the ‘rotation’ of the 
strain axis due to vorticity acts as a nonlinear stretching term, not as a rotation. 
Thus, the signs and relative magnitudes of a, (compared to the shears s,) are of great 
dynamical significance. Since the stretching rates ai are quadratic in vorticity this 
suggests that these ‘rotation ’ terms are particularly important in regions where 
vorticity dominates shear (i.e. in the vortex structures observed in turbulence 
simulations (She et al. 1991)). Furthermore, using incompressibility and the ordering 
s1 2 s2 2 s3 one can see that al(t) < 0 and that a,(t) 2 0 for all times t .  It is evident 
that az can be either positive or negative depending on the relative alignment of 
vorticity with the il and f 3  directions. In either case, the nonlinetr stretching terms 
oppose the production of vorticity -at  lea$ in the t1 and 5, directions. This 
opposition is particularly important in the 5 ,  direction. 

The above discussion of the nonlinear stretching rates a( suggests the following 
Lagrangian description of vortex stretching dynamics. Suppose that a t  some time t 
the intermediate shear is approximately zero, i.e. s2(t )  x 0, and that the vorticity is 
weak, i.e. a(t) x 0. At this instant the nonlinear Stretching rates ai are small and 
vorticity will begin to stretch in the il direction. From (67) it follows that since 
s, x 0 the stretched f ,  component of vorticity will cause s, to  grow and become 
positive, resulting in an increase in 52,. As a consequence of this sequence of events 
01, will become large and negative and will quickly act to nullify the previous growth 
in R, (see (68)). Since s, is still small compared to  s1 the R, stretching will proceed 
for a longer time than the initial stretching of 52, due to sl. This relative long-time 
persistent alignment with i, survives until Q2 itself becomes large at  which point 
contraction of vorticity in the 5, direction becomes significant (due to the quadratic 
contribution of 52, to the always positive nonlinear stretching rate a3). The net result 
is that now 01, becomes negative and large. This suppresses the previous stretching 
of the intermediate vorticity Q,. The alignment with the strong contracting direction 
causes a quick but not total destruction of the previous vorticity build-up. It should 
be emphasized that the relatively small magnitude of the intermediate shear sz 
implies that the vortex stretching in the intcrmediate direction is the most long-lived 
of the stretchings described in this scenario. This sequence of events is robustly 
observed in a variety of simulations that we have performed - even in the presence 
of random forms of the pressure tcrms - and is consistent with vortex stretching 
results in turbulence simulations (Ashurst et al. 1987 ; She et al. 1991). These results 
are discussed elsewhere. 

5. Numerical results 
The goal of the numerical simulations presented here is to study the extent to 

which strain is persistent in several examples of steady three-dimensional flows. As 
integrable flows should not lead to exponential stretching of material lines, we are 
primarily interested in studying flows with chaotic orbits. Nevertheless, regular 
orbits will be shown for comparison. We have chosen to  study the Arnold- 
Beltrami-Childress (ABC) flows and the stretch-twist-fold (STF) flow of Bajer & 
Moffatt (1990). Although these two systems have a fluid mechanical origin and are 
important in dynamo theory they are obviously not ‘turbulent ’ velocity fields. 
Nonetheless they provide interesting models exhibiting chaot.ic orbits (which can be 
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computed to a high degree of accuracy) and enable us to study in detail the 
phcnornenology of the alignment equations. The ABC flows are a three-parameter 
family of flows given by 

(70) I 

I 

u, = Asinz+Ccosy, 

uy = Bsinx+Acosz, 

u, = Csiny+Bcosx. 

1 2 A 2 B 2 C 2 0, 

They satisfy the steady-state Euler equation, and for certain parameter values and 
initial conditions exhibit chaotic orbits. Following Dombre et al. (1986) we take A = 
1, B = l / d 2 ,  C = 1 / d 3  and use initial condition xo = ( O , O ,  0) to  generate a typical 
chaotic trajectory (nearby initial conditions are also used t o  show that measurements 
do not depend on which chaotic trajectory is chosen). We take xo = (1.25,0,0) (again 
using neighbours to test) to generate a typical regular orbit. 

The STP flow are a two-parameter family of Stokes flows defined in the unit sphere 
x2 + y2 + z2 < 1 with velocity field 

(71) 

u, = az - 8xy, 

uy = 11x2+3y2+z2+~xz-3, a ,preal ,  

u, = -ax+2yz-pxy. 

As in the numerical studies of Bajer & Moffatt we fix p = 1 and increase a from 0 to  
some appropriately large value (we use a = 5). When the parameter a = 0, orbits are 
periodic and lie on invariant surfaces. As the parameter a is increased from 0 orbits 
begin to jump randomly between surfaces which closely resemble the a = 0 invariant 
surfaces (Bajer & Moffatt term this phenomenon ' super-adiabatic drift '). Eventually, 
for a values of approximately unity, orbits become chaotic and tend to fill the sphere 
ergodically. For large a orbits settle to a quasi-periodic behaviour. Regardless of the 
value of a, we pick the same initial condition xo = yo = 0.25, zo = 0 (other initial 
conditions give similar results and are not presented here). 

Using the above flows to generate fluid-particle trajectories, simulations are 
performed as follows. We use the Burlisch-Stoer method (Press et al. 1986) to  
simultaneously integrate the evolution equations 

I d 
-&x = u(x,  t ) ,  x(0) = x,, 

-Z=Ai-( i ,Afi[  d -  i(0) = 1,. 
dt 

After choosing a random material line initial condition fo and integrating away 
transients, we record x(t) ,  i(t), and the alignment-relevant quantities deriving from 
x( t )  and i(t). More precisely, the given velocity field u allows us to track the angular 
velocity a(t), the strain tensor S(t) and strain tensor derivative S ( t )  and, from these 
quantities, the eigenvalues sa( t ) ,  eigenvectors fa, eigenvector rotation f l ( t ) ,  the 
cosines of the alignment angles A@) ,  and the exponential separation t;li,,(t). 
(Calculations for surface stretching and vortex stretching rates are not presented 
here.) For the numerical results presented below we have varied the initial conditions 
x, and lo as well as the length of the sampled trajectory and the error tolerance of the 
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10 - 10- 
I 
I 

# 

ODE integrator to verify that the results are numerically trustworthy. Eigenvalues 
and eigenvectors are found using a standard Jacobi rotation method. Care must be 
taken a t  each time step to maintain the correct choice of eigenvector signs. Recall 
that we have ordered the eigenvalues and required that det X = + 1 ; these constraints 
must be preserved for all times. The only arbitrariness comes in the initial choice of 
eigenvector sign. 

The data from the integrated trajectories are given here both as time series and in 
the form of probability distributions. The time series show us the short-time 
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dynamics of the alignment quantities. From this we can tell - at least for the flows 
we present here -which of the terms of the alignment equation play the dominant 
role. Specifically, we can isolate the effects of the ‘alignment enhancing ’ terms 

8 -  

4 -  

from the effects of the ‘alignment rotating’ term 

8 -  

d -  
-n-( t )  = (n(t)-n’(t)) A l(t). 
dt 

-4  - 

- 8  - 

(74) 

- 8  - 
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FIGURE 3. Time series for a single chaotic trajectory of the ABC flows showing the effects of non- 
local pressure. The parameters values are A = 1, B = l /d2 ,  C = l/v'3; the initial condition is the 
point x = y = z = 0. Time series for the following Lagrangian quantities are shown: (a) the 
comppents of the stretching term ( s ~ - [ , , , , ~ )  A t ;  (b )  the components of th: rotation due to vorticity 
D A 1; ( c )  the components of the strain rotaJion due to vorticity ah A 1; and ( d )  the components 
of the strain rotation due to pressure Up A 1. Strain-basis components: -, <, ; ---, tz ; . . . . ., 

Long-time features of the time series are encapsulated in probability distribution 
functions (PDFs). PDFs for several of the quantities we present are commonly 
measured in turbulence simulations (see Girimaji & Pope 1990, for example). PDFs 
for quantities such as the eigenvector rotation Q' are not traditionally studied and 
we believe that such studies should give valuable insight into material element and 
vorticity alignment issues for simulated turbulent flows. 

The main conclusion from the simulations presented below is that strain is far from 
persistent for the flows we have considered. The mean line stretching rate for regular 
orbits is, of course, zero. However, even for chaotic ABC and STF flow trajectories 
we find that Gine z Asl, significantly less than that calculated by Girimaji & Pope 
(1990) using velocity fields derived from direct numerical simulation of the 
Navier-Stokes equation (Girimaji & Pope calculate Gine x is,). Noting that cine/Sl 
is bounded above by 1 and below by 0, we emphasize that the value of & is indeed 
small. 

Alignment time series for regular and chaotic ABC flow trajectories are shown in 
figures 1 and 2 respectively; Even in the short times displayed here both trajectories 
show poor alignment with 5,. For both trajectories it can be seen (compare figures 1 b 
with 1 c, a$d 2 b with 2c)  that the poor alignment is due to the action of the rotation 
term d/dtI-(t). Furthermore, the rotation term is itself dominated by 'bursts' in the 
eigenvector rotation (compare figures I d  with l e ,  and 2d with 2e) .  As Q'( t )  becomes 
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FIQURE 4. Time series for a single STF flow trajectory. The parameters values are a = 0, /3 = 1 ; 
the initial condition is the point x = y = 0.25, z = 0. The quantities shown are as in figure 1. 

large the strain axes jerk sharply and alignment is disrupted. For the regular orbit 
(figure 1) these disruptions occur significantly more frequently and with larger 
amplitude than for the chaotic orbit. The frequency and strength of ttese disruptions 
tend not to give the material line adequate time t: align with el. The chaotic 
trajectory (figure 2) has more time to align with 5, between disruptions. This 
explains, a t  least dynamically, how non-zero exponential line stretching is only 
achieved for the chaotic ABC flow trajectory. Figure 3 gives a simple illustration of 
the strain rotating effects of non-local pressure for the same chaotic ABC flay 
trajectory studied above. MaterialJine rotation terms due to vorticity (52 A A ) ,  
vorticity strain-axis rotation (0; A A ) ,  and pressure strain-axis rotation (Up A i) are 
compared with the material line stretching terms. It is clear from figure 3 that the 
dominant rotation terms are due to  and to  a lesser degree to 52;. 
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FIGURE 5. Time series for a single STF flow trajectory. The parameters values are a = 1, p =  1 ; 
the initial condition is the point x = y = 0.25, z = 0. The quantities shown are as in figure 1. 

Alignment time series for the STF flow with a values of 0 (periodic), 1 (chaotic), 
and 5 (quasi-periodic) are shown in figures 4,5, and 6, respectively. Once again it can 
be seen that the dominant role is taken by the rotation terms of the alignment 
equation. However, for the STF flow trajectories pictured here both the eigenvector 
rotation and the angular velocity are important. It is difficult to see from these time 
series exactly how mean line stretchings of about zero (for a = 0,5  orbits) and about 
$-, (for the a = 1 orbit) are achieved. Insight into the alignment properties of these 
STF flow orbits will be found in the PDF studies presented below. 

The sharp peaks in the eigenvector rotation are caused by approximate 
degeneracies of the eigenvalues (cf. (11)). There are two cases of approximate 
degeneracies: s1 % s2 (which makes SZ; large) and s2 x s3 (which makes SZ; large). In  
either case the near degeneracies in the numerical simulations are never near enough 
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FIGURE 6. Time series for a single STF flow trajectory. The parameters values are a = 5, B = 1 ; 
the initial condition is the point x = y = 0.25, z = 0. The quantities shown are as in figure 1. 

to make any component of 9' larger than of order 100 inverse time units. Thus, we 
trust that our results are not sensitive to possible singularities in the denominator of 
(10). We believe that the frequency with which these two states of near degeneracy 
are reached plays a fundamental role in the general alignment problem. 

The time series presented above only show alignment variables for short times. We 
introduce PDFs to obtain a sense of the long-time dynamics of alignment quantities. 
Specifically, figures 7-1 1 present PDFs corresponding to the trajectories of figures 
1-5 for the following quantities : (a )  the alignment cosines n̂ , (b) the exponential line 
stretching, ( c )  the principal shears sl, s2, and s3, ( d )  the Cartesian velocity uZ, uy, and 
u,, ( e )  the strain-base angular velocity a,, a,, a3, and, finally, ( f )  the eigenvector 
rotation 52;, SZ;, 52;. 

A striking feature of many of the PDFs is that they exhibit considerable 
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FIGURE 7.  Probability distributions for a single periodic trajectory of the ABC flows. The 
parameters values are A = 1, B = 1/2/2.  C = 1 / 4 3 ;  the initial condition is the point z = 1.25, 
y = z = 0. PDFs for the following Lagrangian quantities are shown : (a) components of the alignment 
vector h,( t ) .  h2( t ) ,  h,(t) ; ( b )  the normalized exponential line separation ~ , , , , , , / S ; ;  (c) the shears sl, s2, 
ss; ( d )  the Cartesian components of the velocity vector u,. uy. u,; ( e , f )  the three components of the 
angular velocity Q,, Q,, Q, and eigenvector rotation 52;, 52;. Q;, respectively. Strain, Cartesian 
components: -, <,,x; ---, &,y; ....., &.z .  

symmetry. For example the eigenvalue PDFs are always (i.e. for both chaotic and 
regular orbits for both ABC and STF flows) nearly symmetric under the 
transformation 

( S 1 , S p , S 3 ) H ( - - 3 ,  -8.2, --1) (75) 

(see $ures 7c-11 c ) .  Quantities which depend on thc eigenvectors ti, such as 51, Q', 
and 1 are nearly symmetric under the transformation 

( Q l , Q 2 , 4 3 ) ~ ( ~ 3 Q 3 , ~ 1 ~ 3 Q 2 . ~ l Q l ) ,  V l ,V3  = + I ,  Qt = Qt ,Q; ,h , ,  (76) 
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FIGURE 8. Probability distributions for a single chaotic trajectory of the ABC flows. The 
parameters values are A = 1 ,  B = 1/2/2, C = 1/.\/3; the initial condition is the point x = y = z = 0. 
The PDFs shown here as in figure 7.  

but only for regular orbits (figures 7 a ,  e ,  f ,  9a, e ,  f, l l a ,  e , f ) .  This symmetry is 
broken, albeit weakly, for chaotic orbits (figures 8a,  e ,  f and 10a, e , f ) .  Similarly, 
PDFs for cline itself are completely symmetric for regular orbits (figures 7 b ,  9 b ,  11 b) ,  
which is what one expects since these orbits should show no mean exponential 
stretching, and are only slightly skewed, with a mean of about $, for the chaotic 
orbits (figures 8 b  and 11 b) .  At a heuristic level the very small values of Gine an be 
argued to follow from the symmetric nature of the PDFs for the si (symmetric with 
respect to (75 ) )  and the A, (symmetric with respect to (76 ) )  since 
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FIGURE 9. Probability distributions for a single STF flow trajectory. The parameters values are 
a = 0, /3 = 1 ; the initial condition is the point r = y = 0.25, z = 0. The PDFs shown here are as in 
figure 7.  

The decorrelation assumption, i.e. a r gih,2, needs to be justified although it does 
hold numerically to within 10% or so. 

That the PDFs exhibit approximate symmetries follows from the fact that the 
Eulerian velocity fields themselves possess certain symmetries. In the case of the 
ABC flows these are three reflection symmetries (see Dombre et al. 1986 for details) 
and for the STF flow just one reflection symmetry. Although these symmetries are 
in the physical space of the dynamical system (i.e. in the Eulerian frame) the 
Lagrangian orbits, in the course of their time histories, sample these symmetries 
which then manifest themselves in the PPFs that we have computed. For quantities 
that do not depend on the eigenvectors ti, such as the velocity u and the eigenvalues 

the symmetry seen in the PDFs is easily explained in terms of the underlying 
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FIGURE 10. Probability distributions for a single STF flow trajectory. The parameters values are 
a = 1 ,  p = 1 ; the initial condition is the point x = y = 0.25, z = 0. The PDFs shown here are as in 
figure 7. 

reflection symmetries of the flow field. For quantities that do depend on the 
eigenvectors, such as 51, 0' and 1, the relationship between the symmetries in the 
PDFs and the Eulerian symmetries is more subtle since these quantities are 
influenced by additional equations of motion (specifically by the eigenvector 
evolution equation (10)) that may not possess the same symmetries as the flow field 
itself. 

The symmetries that we see here and their consequences for the stretching and 
alignment kinematics are clearly specific to the particular flow fields studied and are 
unlikely to be relevant to real turbulence. Nonetheless it is important to realize that 
if a flow field has certain (discrete) symmetries these will influence measured 
dynamical quantities even if the sampled orbits are chaotic. Furthermore, 
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FIGURE 11. Probability distributions for a single STF flow trajectory. The parameters values are 
CL = 5, p = 1 ; the initial condition is the point x = y = 0.25, z = 0. The PDFs shown here are as in 
figure 7. 

symmetries that are relevant to  real fluid dynamical situations, such as time-reversal 
symmetry (Drummond & Munch 1990) or other symmetries that might be present, 
can clearly play an important role in the stretching and alignment properties of 
material elements. 

6.  Conclusion 
By working in the rate-of-strain basis we have been able to provide a precise 

analysis of the stretching and alignment behaviour of material elements (equation 
(12)) and vorticity element (equation (19)). These results are purely kinematical 
(other than the assumption that vorticity satisfies the curl of the Euler equations 
(17)).  These equations identify the complex role played by the competing effects of 
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vorticity and strain-basis rotation with the exact solutions for simple flow fields ($3) 
illustrating these effects. It is these effects that determine the extent of 
persistence/non-persistence of a given straining field. In addition the kinematics of 
(12) and (19) is sufficient to predict that mean vorticity stretching is greater than 
mean line stretching. 

The formalism is applicable to any flow field, be it a fluid flow or that of some 
nonlinear dynamical system. However, in the particular case of the former, 
imposition of Navier-Stokes dynamics reveals special features of the stretching and 
alignment process. In  particular the strain rotation vector (defined in (11)) is shown 
to be made of contributions from local vorticity, non-local pressure effects and 
viscous effects. It is the (quantifiable) contributions of these different effects that 
provides the detailed insight into the non-persistence of straining in fluid flows. 
Furthermore, the vorticity alignment equations can be analysed and shown to 
predict a loss of alignment with the strain axis with largest eigenvalue. This result 
provides a kinematic explanation of the observed vorticity alignment with the 
intermediate strain axis. An outstanding question is to understand the precise role 
of the non-local pressure terms in the alignment process. 

There is obviously much scope for numerical study but here we have restricted 
ourselves to simple flow fields (both of interest in dynamo theory) to illustrate the 
basic phenomenology for chaotic particle paths. These results indicate a ‘ bursty ’ 
nature of strain-axis rotation, the surprisingly small value of mean local stretching 
and the role of symmetries in influencing stretching dynamics. 

The authors thank the following individuals for helpful discussions : A. Bha- 
ttacharjee, C. C. Hegna, B. O’Shaughnessy, L. Polvani, D. Bessis, J. D. Fournier 
and H. K. Moffatt. This work is supported by AFOSR grant AFOSR-90-0284. 

Appendix 
Here we show that the eigenvector rotation a l ( t )  for general two-dimensional 

particle paths is finite as the two principle shears become degenerate. In  the following 
we will assume that the velocity gradients and their time derivatives are all finite at 
the time of degeneracy. Using the same notation as in $ 3 ,  n ’ ( t )  for these flows is given 
by (49): 

R .  1 ab-ab 8’ =-- 
2 a2+b2 

The conditions that the shears be degenerate a t  a time t = 7 is a(7) = b(7)  = 0 .  Taking 
the limit of (A 1) as a and b tend to 0 one obtains from L’Hopital’s rule 

1 ah-& 
Q’(7) = --. 

4 a2+b2 

Thus, Q’(T) is finite unless u(7) = b ( ~ )  = 0 (recall, we have assumed that u and d are 
both finite). When the first time derivatives or higher time derivatives (or both) are 
zero at t = 7 repeated applications of L’Hopital’s rule implies that Q’(7) is finite. The 
only possible failure of these repeated applications is the case where time derivatives 
of both a and b are zero to all orders - that  is, that a( t )  = b ( t )  = 0 for all t 2 7. In 
physical flows, of course, this cannot happen. Therefore, we conclude that 8’ must 
be finite for any reasonable two-dimensional particle orbit. 
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